Read the Docs Template

Documentation
Release 0.1

Read the Docs

Aug 18, 2021

GETTING STARTED

1 Installation 3
1.1 Conda. e e 3
1.2 PYPL . o e 3
1.3 GitHub e 3
2 Dependencies 5
3 Examples 7
3.1 CMIP6: NOAA-GFDL CM4 e e e e e e e e e e 7
4 API Reference 13
4.1 Tracking e e e e 13
5 Package Structure 15
6 What’s New 17
7 Citing Ocetrac 19
7.1 Project Contributors e 19
8 Contribution Guide 21
8.1 Featurerequests and feedback L 21
8.2 Reportbugs. e 21
83 FIXbugs e e e e 22
8.4 Preparing Pull Requests L e 22
9 Wishlist 25
Index 27

Read the Docs Template Documentation, Release 0.1

Ocetrac is a Python 3.6+ package designed to label and track the evolution of unique geospatial features in gridded
datasets. The package is designed to accept data that have already been preprocessed, meaning that the data only
contain values the user is interested in tracking. Ocetrac operates lazily with Dask so that it is memory uninhibited and
fast through parallelized execution. We provide examples and demonstrate best practices as developed by the Climate
Data Science Lab at Columbia University. Here you will find instructions on how to install ocetrac, use it’s API, and
contribute to future releases.

For recommendations or bug reports, please visit: https://github.com/ocetrac/ocetrac/issues/new

GETTING STARTED 1

https://github.com/ocetrac/ocetrac/actions
https://codecov.io/gh/ocetrac/ocetrac
https://opensource.org/licenses/MIT
https://pypi.org/project/ocetrac
https://anaconda.org/conda-forge/ocetrac
https://ocetrac.readthedocs.io/en/latest/?badge=latest
https://github.com/ocetrac/ocetrac/issues/new

Read the Docs Template Documentation, Release 0.1

2 GETTING STARTED

CHAPTER
ONE

INSTALLATION

Notes on how to install ocetrac.

1.1 Conda

The easiest way to install the packge is with conda: conda install -c conda-forge ocetrac.

1.2 PyPI

You can also install with pip: pip install ocetrac.

1.3 GitHub

For the most up to date version of ocetrac, you can install directly from the online repository hosted on GitLab.
1. Clone ocetrac to your local machine: git clone https://github.com/ocetrac/ocetrac
2. Change to the parent directory of ocetrac

3. Install ocetrac with pip install -e ./ocetrac. This will allow changes you make locally, to be reflected
when you import the package in Python

Read the Docs Template Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER
TWO

DEPENDENCIES

The only requirement is Python >=3.6. The following dependencies will also be installed:
e xarray
* dask
e scipy

e scikit-image

http://xarray.pydata.org/en/stable/
https://docs.dask.org/en/latest/install.html
https://scipy.org/scipylib/
https://scikit-image.org/

Read the Docs Template Documentation, Release 0.1

6 Chapter 2. Dependencies

[1]:

[17:

[2]:

CHAPTER
THREE

EXAMPLES

3.1 CMIP6: NOAA-GFDL CM4

Here is a quick example of how to use :py:class:Tracker.track to detect and track marine heatwaves from the
Geophysical Fluid Dynamics Global Climate Model, CM4.

First import numpy, xarray, matplotlib, intake, cmip6_preprocessing, ocetrac, and dask:

import numpy as np

import xarray as xr

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

import intake

from cmip6_preprocessing.preprocessing import combined_preprocessing
import ocetrac

libraries for dask gateway

from dask_gateway import Gateway
from dask.distributed import Client
from dask import delayed

import dask
dask.config.set({"array.slicing.split_large_chunks": False})

<dask.config.set at 0x7f2a58a59fd®>

Start a dask kubernetes cluster:

gateway = Gateway()

cluster = gateway.new_cluster()
cluster.adapt (minimum=1, maximum=75)
client = Client(cluster)

cluster

VBox(children=(HTML (value="'<h2>GatewayCluster</h2>"'), HBox(children=(HTML (value="\n<div>\
—n<style scoped>\n

Don’t forget to click the link above to view the scheduler dashboard!

https://www.gfdl.noaa.gov/coupled-physical-model-cm4/

[3]:

[4]:

[4]:

[5]:

Read the Docs Template Documentation, Release 0.1

3.1.1 An ESM collection for CMIP6 Zarr data resides on Pangeo’s Google Storage.

col = intake.open_esm_datastore("https://storage.googleapis.com/cmip6/pangeo-cmip6.json")

create a query dictionary

query = col.search(experiment_id=['historical'], # all forcing of the recent past

table_id="Omon', # ocean monthly data
source_id="GFDL-CM4', # GFDL Climate Model 4
variable_id=['tos'], # temperature ocean surface
grid_label="gr', # regridded data on target grid
)

query

<IPython.core.display.HTML object>

ds = query.to_dataset_dict(zarr_kwargs={'consolidated': True},
storage_options={'token': 'anon'},
preprocess=combined_preprocessing,

)

tos = ds['CMIP.NOAA-GFDL.GFDL-CM4.historical.Omon.gr'].tos.isel(member_id=0).

—sel(time=slice('1980"', '2014"))
tos

--> The keys in the returned dictionary of datasets are constructed as follows:
'activity_id.institution_id.source_id.experiment_id.table_id.grid_label’

<IPython.core.display.HTML object>

<xarray.DataArray 'tos' (time: 420, y: 180, x: 360)>

dask.array<getitem, shape=(420, 180, 360), dtype=float32, chunksize=(120, 180, 360),.

—chunktype=numpy .ndarray>

Coordinates:
*y (y) float64 -89.5 -88.5 -87.5 -86.5 -85.5 ... 86.5 87.5 88.5 89.5
* x (x) float64 0.5 1.5 2.5 3.5 4.5 ... 355.5 356.5 357.5 358.5 359.5
* time (time) object 1980-01-16 12:00:00 ... 2014-12-16 12:00:00
lon (x, y) float64 0.5 0.5 0.5 0.5 0.5 ... 359.5 359.5 359.5 359.5
lat (x, y) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5
member_id <U8 'rlilplfl'
Attributes:
cell_measures: area: areacello
cell_methods: area: mean where sea time: mean
comment : Model data on the 1x1 grid includes values in all cells f...

interp_method: conserve_orderl
long_name: Sea Surface Temperature
original_name: tos

standard_name: sea_surface_temperature
units: degC

tos.isel(time=0).plot(vmin=0, vmax=32);

Chapter 3. Examples

Read the Docs Template Documentation, Release 0.1

time = 1980-01-16 12:00:00, member_id = rlilplfl

25
20
15

10

Sea Surface Temperature [degC]

T T T T T T T
50 100 150 200 250 300 350
b

=

Create a binary mask for ocean points:

[6]: mask_ocean = 1 * np.ones(tos.shape[l1:]) * np.isfinite(tos.isel(time=0))
mask_land = 0 * np.ones(tos.shape[l:]) * np.isnan(tos.isel(time=0))
mask = mask_ocean + mask_land
mask.plot()

[6]: <matplotlib.collections.QuadMesh at 0x7f2a054b6610>

time = 1980-01-16 12:00:00, member_id = rlilplfl

0.8

06

tos

04

02

0.0

o 50 100 154 200 250 300 350

3.1. CMIP6: NOAA-GFDL CM4 9

[77:

[8]:

[9]:

Read the Docs Template Documentation, Release 0.1

Define anomalies and extreme values

We will simply define monthly anomalies by subtracting the monthly climatology averaged across 1980-2014. Anoma-
lies that exceed the monthly 90th percentile will be considered here as extreme.

climatology = tos.groupby(tos.time.dt.month).mean()
anomaly = tos.groupby(tos.time.dt.month) - climatology

Rechunk time dim
if tos.chunks:
tos = tos.chunk({'time': -13})

percentile = .9

threshold = tos.groupby(tos.time.dt.month).quantile(percentile, dim="time', keep_
—attrs=True, skipna=True)

hot_water = anomaly.groupby(tos.time.dt.month) .where(tos.groupby(tos.time.dt.month)>
—.threshold)

/srv/conda/envs/notebook/1lib/python3.8/site-packages/xarray/core/indexing.py:1369:.
—PerformanceWWarning: Slicing with an out-of-order index is generating 35 times more.
—chunks

return self.array[key]

%%time
hot_water.load()
client.close()

CPU times: user 895 ms, sys: 163 ms, total: 1.06 s
Wall time: 1min 31s

The plots below shows sea surface temperature anomalies averaged for the month of January 1980. The right panel
only shows the extreme anomalies exceeding the 90th percentile.

plt.figure(figsize=(16,3))

axl = plt.subplot(121);anomaly.isel(time=0).plot(cmap="'RdBu_r")
mask .where (mask==0) .plot.contourf(colors="'k', add_colorbar=False); axl.set_aspect('equal

-");

ax2 = plt.subplot(122); hot_water.isel(time=0).plot(cmap="Reds', vmin=0);
mask .where (mask==0) .plot.contourf(colors="'k', add_colorbar=False); ax2.set_aspect('equal
=');
/srv/conda/envs/notebook/1lib/python3.8/site-packages/dask/array/numpy_compat.py:40:
—RuntimeWarning: invalid value encountered in true_divide

X = np.divide(xl, x2, out)

10 Chapter 3. Examples

[10]:

[11]:
[11]:

Read the Docs Template Documentation, Release 0.1

time = 1980-01-16 12:00:00, member_id = rlilp1fl time = 1980-01-16 12:00:00, member_id = rlilplfl

- . i5

75 n agn __.“"_ 75 v e _.“" iy

- » ‘r By ' ‘r y
= -l y v -

5 ‘ 5 ‘ 25
. a " 3 20
= 0 L - "é = 0 5 - — “é‘
25 & iy -2 25 !) s
o pi . o . T 10

0.0
0 50 100 150 200 250 300 350 o 50 100 150 200 250 300 350
x x

= M B oo
w
=]

Label and Track Marine Heatwaves

Using the extreme SST anomalies only, we use Ocetrac to label and track marine heatwave events.

We need to define two key parameters that can be tuned bases on the resolution of the dataset and distribution of data.
The first is radius which represents the number of grid cells defining the width of the structuring element used in the
morphological operations (i.e., opening and closing). The second is min_size_quartile that is used as a threshold
to subsample the objects accroding the the distribution of object area.

%%time
Tracker = ocetrac.Tracker(hot_water, mask, radius=2, min_size_quartile=0.75, timedim =

—'time', xdim = 'x', ydim='y', positive=True)
blobs = Tracker.track()

minimum area: 107.0

inital objects identified 15682

final objects tracked 903

CPU times: user 41 s, sys: 1.54 s, total: 42.6 s
Wall time: 42.6 s

Let’s take a look at some of the attributes.

There were over 15,500 MHW object detected. After connecting these events in time and eliminating objects smaller
than the 75th percentle (equivalent to the area of 107 grid cells), 903 total MHWs are identified between 1980-2014.

blobs.attrs

{'inital objects identified': 15682,
'final objects tracked': 903,
'radius': 2,
'size quantile threshold': 0.75,
'min area': 107.0,
'percent area reject': 0.17453639541742397,
'percent area accept': 0.8254636045825761}

3.1. CMIP6: NOAA-GFDL CM4 11

Read the Docs Template Documentation, Release 0.1

Plot the labeled marine heatwaves on January 1980 and compare it to the input image of extreme
sea surface temperature anomalies.

[12]: maxl = int(np.nanmax(blobs.values))
cm = ListedColormap(np.random.random(size=(maxl, 3)).tolist())

plt.figure(figsize=(16,3))

axl = plt.subplot(121);blobs.isel(time=0).plot(cmap= cm)

mask.where(mask==0) .plot.contourf(colors="k', add_colorbar=False); axl.set_aspect('equal
=99

ax2 = plt.subplot(122); hot_water.isel(time=0).plot(cmap="Reds', vmin=0);

mask .where (mask==0) .plot.contourf(colors="'k', add_colorbar=False); ax2.set_aspect('equal
-');

time = 1980-01-16 12:00:00, member_id = rlilp1fl . time = 1980-01-16 12:00:00, member_id = rlilplfl

- - 35

b5} o _‘v 5] . - _‘v

50] .f o 5 50 r] > o 3.0

g -l ’ v -
5 ‘ . 5 ‘ 25
n -z 20
= 0 L . z = 0 LT . — a
=

25 ! “ 3 a5 ! “ 15
50 -) 0 - i - ‘ 10

e 05
1 0.0
o 50 100 150 200 250 300 350 o 50 100 150 200 50 300 350

12 Chapter 3. Examples

CHAPTER
FOUR

API REFERENCE

The API reference is automatically generated from the function docstrings in the octrac package. Refer to the examples
in the sidebar for reference on how to use the functions.

4.1 Tracking

Tracker. track()

Label and track image features.

4.1.1 ocetrac.Tracker.track

Tracker.track()

Label and track image features.

Parameters

da (xarray.DataArray) — The data to label.

mask (xarray.DataArray) — The mask of ponts to ignore. Must be binary where 1 = true
point and 0 = background to be ignored.

radius (int) — The size of the structuring element used in morphological opening and
closing. Radius specified by the number of grid units.

min_size_quartile (float) — The quantile used to define the threshold of the smallest
area object retained in tracking. Value should be between 0 and 1.

timedim (str) — The name of the time dimension
xdim (str) — The name of the x dimension
ydim (str) — The namne of the y dimension

positive (bool) — True if da values are expected to be positive, false if they are negative.
Default argument is True

Returns labels — Integer labels of the connected regions.

Return type xarray.DataArray

13

Read the Docs Template Documentation, Release 0.1

14 Chapter 4. API Reference

CHAPTER
FIVE

PACKAGE STRUCTURE

15

Read the Docs Template Documentation, Release 0.1

16 Chapter 5. Package Structure

CHAPTER
SIX

WHAT’S NEW

17

Read the Docs Template Documentation, Release 0.1

18 Chapter 6. What’s New

CHAPTER
SEVEN

CITING OCETRAC

7.1 Project Contributors

The following people have made contributions to the project (in alphabetical order by last name) and are considered
“Ocetrac Developers”. These contributors will be added as authors upon the next major release of ocetrac (i.e. new
DOI release).

* Ryan Abernathey - Columbia University, USA. (ORCID: 0000-0001-5999-4917)

* Julius Busecke - Columbia University, USA. (ORCID: 0000-0001-8571-865X)

e David John Gagne - National Center for Atmospheric Research, USA. (ORCID: 0000-0002-0469-2740)
 Hillary Scannell - Columbia University, USA. (ORCID: 0000-0002-6604-1695)

e LuAnne Thompson - University of Washington, USA. (ORCID: 0000-0001-8295-0533)

e Daniel Whitt - National Aeronautics and Space Administration, Ames Research Center, USA.

19

https://rabernat.github.io/
https://orcid.org/0000-0001-5999-4917
http://jbusecke.github.io/
https://orcid.org/0000-0001-8571-865X
https://staff.ucar.edu/users/dgagne
https://orcid.org/0000-0002-0469-2740
https://www.hillaryscannell.com/
https://orcid.org/0000-0002-6604-1695
https://www.ocean.washington.edu/home/LuAnne+Thompson
https://orcid.org/0000-0001-8295-0533
https://danielwhitt.github.io/

Read the Docs Template Documentation, Release 0.1

20

Chapter 7. Citing Ocetrac

CHAPTER
EIGHT

CONTRIBUTION GUIDE

Contributions are highly welcomed and appreciated. Every little help counts, so do not hesitate! You can make a high
impact on ocetrac just by using it, being involved in discussions and reporting issues.

The following sections cover some general guidelines regarding development in ocetrac for maintainers and contrib-
utors.

Nothing here is set in stone and can’t be changed. Feel free to suggest improvements or changes in the workflow.

Contribution links

e Contribution Guide

— Feature requests and feedback

Report bugs

Fix bugs

Preparing Pull Requests

8.1 Feature requests and feedback

We are eager to hear about your requests for new features and any suggestions about the API, infrastructure, and so on.
Feel free to start a discussion about these on the discussions tab on github under the “ideas” section.

After discussion with a few community members, and agreement that the feature should be added and who will work
on it, a new issue should be opened. In the issue, please make sure to explain in detail how the feature should work and
keep the scope as narrow as possible. This will make it easier to implement in small PRs.

8.2 Report bugs

Report bugs for ocetrac in the issue tracker with the label “bug”.

If you can write a demonstration test that currently fails but should pass that is a very useful commit to make as well,
even if you cannot fix the bug itself.

21

https://github.com/ocetrac/ocetrac/discussions
https://github.com/ocetrac/ocetrac/issues
https://github.com/ocetrac/ocetrac/discussions
https://github.com/ocetrac/ocetrac/issues

Read the Docs Template Documentation, Release 0.1

8.3 Fix bugs

Look through the GitHub issues for bugs.

Talk to developers to find out how you can fix specific bugs.

8.4 Preparing Pull Requests

1. Fork the ocetrac GitHub repository. It’s fine to use ocetrac as your fork repository name because it will live
under your username.

2. Clone your fork locally using git, connect your repository to the upstream (main project), and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/ocetrac.git # clone to local machine
$ cd ocetrac

$ git remote add upstream git@github.com:ocetrac/ocetrac.git # connect to upstream.
—remote

now, to fix a bug or add feature create your own branch off "main":

$ git checkout -b your-bugfix-feature-branch-name main # Create a new branch where.
—you will make changes

If you need some help with Git, follow this quick start guide: https://git.wiki.kernel.org/index.php/QuickStart

3. Set up a [conda](environment) with all necessary dependencies:

$ conda env create -f ci/environment-py3.8.yml

4. Activate your environment:

§ conda activate test_env_ocetrac

Make sure you are in this environment when working on changes in the future too.

5. Install the Ocetrac package:

$ pip install -e . --no-deps

6. Before you modify anything, ensure that the setup works by executing all tests:

$ pytest

You want to see an output indicating no failures, like this:

$ n passed, j warnings in 17.07s.

—

7. Install pre-commit and its hook on the ocetrac repo:

$ pip install --user pre-commit
$ pre-commit install

Afterwards pre-commit will run whenever you commit. If some errors are reported by pre-commit you should
format the code by running:

22 Chapter 8. Contribution Guide

https://github.com/ocetrac/ocetrac/labels/bug
https://github.com/ocetrac/ocetrac
https://git-scm.com/
https://git.wiki.kernel.org/index.php/QuickStart
https://pre-commit.com

Read the Docs Template Documentation, Release 0.1

$ pre-commit run --all-files

and then try to commit again.

https://pre-commit.com/ is a framework for managing and maintaining multi-language pre-commit hooks to
ensure code-style and code formatting is consistent.

You can now edit your local working copy and run/add tests as necessary. Please follow PEP-8 for
naming. When committing, pre-commit will modify the files as needed, or will generally be quite
clear about what you need to do to pass the commit test.

8. Break your edits up into reasonably sized commits:

$ git commit -a -m "<commit message>"
$ git push -u

Committing will run the pre-commit hooks (isort, black and flake8). Pushing will run the pre-push hooks (pytest
and coverage)

We highly recommend using test driven development, but our coverage requirement is low at the moment due to
lack of tests. If you are able to write tests, please stick to xarray’s testing recommendations.

9. Add yourself to the Project Contributors list via . /docs/authors.md.

10. Finally, submit a pull request (PR) through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/ocetrac
compare: your-branch-name

base-fork: ocetrac/ocetrac
base: main

The merged pull request will undergo the same testing that your local branch had to pass when pushing.

11. After your pull request is merged into the ocetrac/main, you will need to fetch those changes and rebase your
main so that your main reflects the latest version of ocetrac. The changes should be fetched and incorporated
(rebase) also right before you are planning to introduce changes.:

$ git checkout main # switch back to main branch

$ git fetch upstream # Download all changes from central upstream repo

$ git rebase upstream/main # Apply the changes that have been made to central repo,
§ # since your last fetch, onto your main.

$ git branch -d your-bugfix-feature-branch-name # to delete the branch after PR is.
—.approved

8.4. Preparing Pull Requests 23

https://pre-commit.com/
http://xarray.pydata.org/en/stable/contributing.html
https://ocetrac.readthedocs.io/en/latest/authors.html

Read the Docs Template Documentation, Release 0.1

24

Chapter 8. Contribution Guide

CHAPTER
NINE

WISHLIST

By adopting open-source best practices, we hope ocetrac will grow into a widely used, community-based project. We
anticipate ocetrac will have broad applications in geoscience and are excited to see it used in other domains besides
oceanography.

25

Read the Docs Template Documentation, Release 0.1

26

Chapter 9. Wishlist

INDEX

T

track () (ocetrac.Tracker method), 13

27

	Installation
	Conda
	PyPI
	GitHub

	Dependencies
	Examples
	CMIP6: NOAA-GFDL CM4
	An ESM collection for CMIP6 Zarr data resides on Pangeo’s Google Storage.
	Define anomalies and extreme values
	Label and Track Marine Heatwaves
	Let’s take a look at some of the attributes.
	Plot the labeled marine heatwaves on January 1980 and compare it to the input image of extreme sea surface temperature anomalies.

	API Reference
	Tracking
	ocetrac.Tracker.track

	Package Structure
	What’s New
	Citing Ocetrac
	Project Contributors

	Contribution Guide
	Feature requests and feedback
	Report bugs
	Fix bugs
	Preparing Pull Requests

	Wishlist
	Index

